Table of Contents

INFORMATION PAGE \#
Control Valves Selection and Sizing
Globe and Ball Valves I-2
Butterfly Valves I-15
Valve and Actuator Terminology I-18
Damper Actuators Selection and Sizing
Damper Actuators I-21
NEMA Ratings
NEMA Descriptions I-22
Pneumatic Relays
Relay Piping I-23
Retrofit Cross Reference I-26
Conversion Tables
Conversion Factors |-27
English to Metric Conversion Guide 1-29
Pressure Conversion Table I-30
Temperature Conversion Table I-31
Psychrometric Chart I-32

Globe and Ball Valves

Selecting Valves: Globe vs. Ball

The control valve is the most important single element in any fluid handling system, because it regulates the flow of fluid to the process. To properly select a control valve, a general knowledge of the process and components is usually necessary. This reference section can help you select and size the control valve that most closely matches the process requirements.

The sizing of a valve is very important if it is to render good service. If it is undersized, it will not have sufficient capacity. If it is oversized, the controlled variable may cycle, and the seat, and plug will be subject to wire drawing because of the restricted opening.

Systems are designed for the most adverse conditions expected (i.e., coldest weather, greatest load, etc.). In addition, system components (boiler, chiller, pumps, coils, etc.) are limited to sizes available and frequently have a greater capacity than system requirements. Correct sizing of the control valve for actual expected conditions is considered essential for good control.

A basic rule of control valve sizing is:

The higher the percentage of drop across the wide open valve in relation to the percentage of pressure drop through the line and process coil, the better the control.

Technical Comparison Between Globe and Ball Valves

Technically, the globe valve has a stem and plug, which strokes linearly, commonly referred to as "stroke" valves. The ball valve has a stem and ball, which turns horizontally, commonly referred to as "rotational" valves.

Early ball valves used a full port opening, allowing large amounts of water to pass through the valve. This gave HVAC controls contractors the ability to select a ball valve two to three pipe sizes smaller than the piping line size. Compared to traditional globe valves that would be only one pipe size smaller than the line size, this was often a more cost-effective device-level solution. In addition, the ball valve could be actuated by a damper actuator, rather than expensive box-style "Mod" motors.

Pricing Comparison

Today, with equivalent pricing between ball and globe valves, the full port ball valve is falling out of favor for most HVAC control applications. This is also due to its poor installed flow characteristic that leads to its inability to maintain proper control. New "flow optimized" or characterized ball valves, specifically designed for modulating applications, have been developed. Characterized ball valves are sized the same way as globe valves. They provide an equal percentage flow characteristic, enabling stable control of fluids. Additionally, there are more cost-effective valve actuators now available for globe valves. Better control and more-competitive pricing now puts globe valves on the same playing field as characterized ball valves.

Selection Guidelines

Globe Valve

- High differential pressure across valve
- Rebuilding of the valve is desired
- Better control performance
- Better low flow (partial load) performance
- Use for steam, water or water/glycol media
- Smaller physical profile than a comparable ball valve

Characterized Ball Valve

- Tight shutoff or high close offs of around $100 \mathrm{psi}^{*}$ are required
- Isolation or two position control**
- Use for water or water/glycol solution only

[^0]
Sizing

Pressure Drop for Water Flow

A pressure drop must exist across a control valve if flow is to occur. The greater the drop, the greater the flow at any fixed opening. The pressure drop across a valve also varies with plug position - from minimum when fully open, to 100% of the system drop when fully closed.

To size a valve properly, it is necessary to know the full flow pressure drop across it. The pressure drop across a valve is the difference in pressure between the inlet and outlet under flow conditions. When it is specified by the engineer and the required flow is known, the selection of a valve is simplified. When this pressure drop is not known, it must be computed or assumed.

If the pressure drop across the valve when fully open is not a large enough percentage of the total system drop, there will be little change in fluid flow until the valve actually closes, forcing the valve's characteristic toward a quick opening form.

Figure 1 shows flow-lift curves for a linear valve with various percentages of design pressure drop. Note the improved characteristic as pressure drop approaches 100% of system pressure drop at full flow.

It is important to realize that the flow characteristic for any particular valve, such as the linear characteristic shown in Figure 1 is applicable only if the pressure drop remains nearly constant across the valve for full stem travel. In most systems, however, it is impractical to take 100% of the system drop across the valve.

A good working rule is, "at maximum flow, 25 to 50% of the total system pressure drop should be absorbed by the control valve." Although this generally results in larger pump sizes, it should be pointed out that the initial equipment cost is offset by a reduction in control valve size, and results in improved controllability of the system. Reasonably good control can be accomplished with pressure drops of 15 to 30% of total system pressures. A drop of 15% can be used if the variation in flow is small.

Recommended Pressure Drops for Valve Sizing - Water

1. With a differential pressure less than 20 psi, use a pressure drop equal to 5 psi.
2. With a differential pressure greater than 20 psi , use a pressure drop equal to 25% of total system pressure drop (maximum pump head), but not exceeding the maximum rating of the valve.

Pressure Drop for Steam

The same methodology should be applied for selecting a valve for steam with the most important consideration is the pressure drop.

First, the correct maximum capacity of the coil must be determined. Ideally, there should be no safety factor in this determination and it should be based on the actual BTU heating requirements. The valve size must be based on the actual supply pressure at the valve. When the valve is fully open, the outlet pressure will assume a valve such that the valve capacity and coil condensing rate are in balance. If this outlet valve pressure is relatively large (small pressure drop), then as the valve closes, there will be no appreciable reduction in flow until the valve is nearly closed. To achieve better controllability, the smallest valve (largest pressure drop) should be selected. With the valve outlet pressure much less than the inlet pressure, a large pressure drop results. There will now be an immediate reduction in capacity as the valve throttles. For steam valves, generally the largest possible pressure drop should be taken, without exceeding the critical pressure ratio. Therefore, the steam pressure drop should approach 80% of the system differential pressure.
Examining the pressure drops under "Recommended Pressure Drops for Valve Sizing - Steam", you might be concerned about the steam entering the coil at 0 psi when a large drop is taken across the control valve. Steam flow through the coil will still drop to vacuum pressures due to condensation of the steam. Consequently, a pressure differential will still exist. In this case, proper steam trapping and condensation piping is essential.

Figure 1.

Recommended Pressure Drops for Valve Sizing Steam

1. With gravity flow condensate removal and inlet pressure less than 15 psi , use a pressure drop equal to the inlet gauge pressure.
2. With vacuum return system up to 7 CHg vacuum and an inlet pressure less than 2 psi , a pressure drop of 2 psi should be used. With an inlet pressure of 2 to 15 psi , use a pressure drop equal to the inlet gauge pressure.
3. With an inlet pressure greater than 15 psi , use a pressure drop equal to 80% of system differential pressure. Example: Inlet pressure is 20 psig (35 psia) and a gravity return at atmospheric pressure 0 psig (14.7 psia), use a pressure drop of 16 psi .
4. When a coil size is selected on the basis that line pressure and temperature is available in the coil of a heating and ventilating application, a very minimum pressure drop is desired. In this case, use the following: pressure drop:

Initial Pressure	Pressure Drop
15 psi	5 psi
50 psi	7.5 psi
100 psi	10 psi
Over 100 psi	10% of line pressure

(typically on/off applications)

The Most Important Variables to Consider

 When Sizing a Valve:1. What medium will the valve control? Water? Air? Steam? What effects will specific gravity and viscosity have on the valve size?
2. What will the inlet pressure be under maximum load demand? What is the inlet temperature?
3. What pressure drop (differential) will exist across the valve under maximum load demand?
4. What maximum capacity should the valve handle?
5. What is the maximum pressure differential the valve top must close against?
When these are known, a valve can be selected by formula (Cv method) or water and steam capacities tables which can be found in the Valves section, pages D-7 through D-10. The valve size should not exceed the line size.

Valve Sizing and Selection Example

Select a valve to control a chilled water coil that must have a flow of 35 GPM with a valve differential pressure $(\triangle P)$ of 5 psi.
Determine the valve Cv using the formula for liquids.

$$
C v=Q \quad \sqrt{\frac{S}{P}}=35 G P M \sqrt{\frac{1}{5 p s i}}=15.6
$$

Select a valve that is suitable for this application and has a Cv as close as possible to the calculated value.

One choice is 277-03186: a 1-1/4" NC valve with a Cv of 16. Refer to Flowrite Valves Reference section.

Valve Selection Criteria

1. Flow characteristic-Modified Equal Percentage which provides good control for a water coil.
2. Body rating and material-Suitable for water.
3. Valve type and action-A single seat NC valve with an adjustable spring range which can be sequenced with a NO valve used for heating.
4. Valve actuator-Actuator close-off rating is higher than the system differential pressure.
5. Valve line size—Its Cv is close to and slightly larger than the calculated Cv (15.6).
6. For Ball Valves-use the same selection criteria.

Valve Body Rating

The temperature-pressure ratings for ANSI Classes 125 and 250 valve bodies made of bronze or cast iron are shown below.

Description	Temperature	Pressure	
		ANSI Class 125	ANSI Class 250
Bronze Screwed Bodies Specification \#B16.15-1978 ANSI Amer. Std.; USA; ASME	-20 to $+150^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+66^{\circ} \mathrm{C}\right)$	$200 \mathrm{psi}(1378 \mathrm{kPa})$	$400 \mathrm{psi}(2758 \mathrm{kPa})$
	-20 to $+200^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+93^{\circ} \mathrm{C}\right)$	190 psi (1310 kPa)	385 psi (2655 kPa)
	-20 to $+250^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+121^{\circ} \mathrm{C}\right)$	180 psi (1241 kPa)	365 psi (2586 kPa)
	-20 to $+300^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+149^{\circ} \mathrm{C}\right)$	$165 \mathrm{psi}(1138 \mathrm{kPa})$	$335 \mathrm{psi}(2300 \mathrm{kPa})$
	-20 to $+350^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+177^{\circ} \mathrm{C}\right)$	150 psi (1034 kPa)	$300 \mathrm{psi}(2068 \mathrm{kPa})$
	-20 to $+400^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+204^{\circ} \mathrm{C}\right)$	$125 \mathrm{psi}(862 \mathrm{kPa})$	250 psi (1724 kPa)
Cast Iron Flanged Bodies Class B-sizes 1 to 12 Specification \#B16.1 1975 ANSI Amer. Std.; USA; ASME	-20 to $+150^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+66^{\circ} \mathrm{C}\right)$	200 psi (1378 kPa)	500 psi (3445 kPa)
	-20 to $+200^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+93^{\circ} \mathrm{C}\right)$	190 psi (1310 kPa)	$460 \mathrm{psi}(3169 \mathrm{kPa})$
	-20 to $+225^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+106^{\circ} \mathrm{C}\right)$	$180 \mathrm{psi}(1241 \mathrm{kPa})$	$440 \mathrm{psi}(3032 \mathrm{kPa})$
	-20 to $+250^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+121^{\circ} \mathrm{C}\right)$	175 psi (1206 kPa)	415 psi (2859 kPa)
	-20 to $+275^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+135^{\circ} \mathrm{C}\right)$	170 psi (1171 kPa)	395 psi (2722 kPa)
	-20 to $+300^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+149^{\circ} \mathrm{C}\right)$	165 psi (1138 kPa)	375 psi (2584 kPa)
	-20 to $+325^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+163^{\circ} \mathrm{C}\right)$	155 psi (1069 kPa)	355 psi (2448 kPa)
	-20 to $+350^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+177^{\circ} \mathrm{C}\right)$	$150 \mathrm{psi}(1034 \mathrm{kPa})$	335 psi (2308 kPa)
	-20 to $+375^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+191^{\circ} \mathrm{C}\right)$	$145 \mathrm{psi}(1000 \mathrm{kPa})$	$315 \mathrm{psi}(2170 \mathrm{kPa})$
	-20 to $+400^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+204^{\circ} \mathrm{C}\right)$	$140 \mathrm{psi}(965 \mathrm{kPa})$	290 psi (1998 kPa)
	-20 to $+425^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+218^{\circ} \mathrm{C}\right)$	$130 \mathrm{psi}(896 \mathrm{kPa})$	270 psi (1860 kPa)
	-20 to $+450^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+232^{\circ} \mathrm{C}\right)$	$125 \mathrm{psi}(862 \mathrm{kPa})$	250 psi (1734 kPa)

SIEMENS

$\triangle \triangleleft$ 2-Way, Full-Port (no flow optimizer) Ball Valve Part Nos. and Flow Coefficients

$$		Valve Part No.	Effective (Installed) Cv (Kvs)								
		Supply Line Size in Inches (mm)									
		$\begin{gathered} 1 / 2 \\ (13) \end{gathered}$	$\begin{gathered} 3 / 4 \\ (20) \end{gathered}$	$\begin{gathered} 1 \\ (25) \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (32) \end{gathered}$	$\begin{gathered} 1-1 / 2 \\ (38) \end{gathered}$	$\begin{gathered} 2 \\ (51) \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (63) \end{gathered}$	$\begin{gathered} 3 \\ (76) \end{gathered}$		
1/2	(15)		$\begin{aligned} & \text { 599-10307 or } \\ & \text { 599-10307S } \end{aligned}$	$\begin{gathered} 10.0 \\ (8.62) \end{gathered}$	$\begin{gathered} 6.94 \\ (5.93) \end{gathered}$	$\begin{gathered} 6.19 \\ (5.29) \end{gathered}$					
$3 / 4$	(20)		$\begin{aligned} & \text { 599-10311 or } \\ & \text { 599-10311S } \end{aligned}$		$\begin{gathered} 25.00 \\ (21.55) \end{gathered}$	$\begin{gathered} \hline 18.66 \\ (15.99) \end{gathered}$	$\begin{gathered} 15.35 \\ (13.12) \end{gathered}$				
1	(25)	$\begin{aligned} & \text { 599-10316 or } \\ & \text { 599-10316S } \end{aligned}$			$\begin{gathered} 63.00 \\ (54.31) \end{gathered}$	$\begin{gathered} 39.78 \\ (34.00) \end{gathered}$	$\begin{gathered} \hline 33.56 \\ (28.69) \end{gathered}$				
1-1/4	(30)	$\begin{aligned} & \text { 599-10321 or } \\ & 599-10321 \mathrm{~S} \end{aligned}$				$\begin{aligned} & 100.00 \\ & (86.21) \end{aligned}$	$\begin{aligned} & 69.19 \\ & (5.13) \end{aligned}$	$\begin{gathered} \hline 51.45 \\ (43.98) \end{gathered}$			
1-1/2	(40)	$\begin{aligned} & \text { 599-10326 or } \\ & \text { 599-10326S } \end{aligned}$					$\begin{gathered} 160.00 \\ (137.93) \end{gathered}$	$\begin{gathered} 93.80 \\ (80.17) \end{gathered}$	$\begin{gathered} 76.34 \\ (65.25) \end{gathered}$		
2	(50)	$\begin{aligned} & \text { 599-10329 or } \\ & \text { 599-10329S } \end{aligned}$						$\begin{aligned} & 100.00 \\ & (86.21) \end{aligned}$	$\begin{gathered} 94.30 \\ (80.60) \end{gathered}$	$\begin{gathered} 86.12 \\ (73.61) \end{gathered}$	

3-Way, Full-Port (no flow optimizer) Ball Valve Part Nos. and Flow Coefficients

$\begin{gathered} \text { Valve } \\ \text { Size } \\ \text { in. }(\mathrm{mm}) \end{gathered}$	Ball Size in. (mm)	Valve Part No.	Effective (Installed) Cv (Kvs)							
			Supply Line Size in Inches (mm)							
			$\begin{gathered} 1 / 2 \\ (13) \end{gathered}$	$\begin{gathered} 3 / 4 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (25) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (32) \end{gathered}$	$\begin{gathered} 1-1 / 2 \\ (38) \end{gathered}$	$\begin{gathered} 2 \\ (51) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (63) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (76) \\ \hline \end{gathered}$
1/2 (15)	3/4 (20)	599-10255	$\begin{gathered} 10.0 \\ (8.62) \end{gathered}$	$\begin{gathered} 6.94 \\ (5.93) \end{gathered}$	$\begin{gathered} 6.19 \\ (5.29) \end{gathered}$					
3/4 (20)	3/4 (20)	599-10256		$\begin{gathered} 16.00 \\ (13.79) \end{gathered}$	13.9 (11.98)	$\begin{gathered} 12.4 \\ (10.69) \end{gathered}$				
1 (25)	1-1/4 (30)	599-10259			$\begin{gathered} 25.00 \\ (21.55) \end{gathered}$	$\begin{gathered} 22.5 \\ (19.4) \end{gathered}$	$\begin{gathered} 21.2 \\ (18.27) \end{gathered}$			
1-1/4 (30)	1-1/4 (30)	599-10261				$\begin{gathered} 40.00 \\ (34.48) \end{gathered}$	$\begin{gathered} 36.9 \\ (31.81) \end{gathered}$	$\begin{gathered} 33.3 \\ (28.70) \end{gathered}$		
1-1/2 (40)	1-1/2 (40)	599-10264					$\begin{gathered} 63.00 \\ (54.31) \end{gathered}$	$\begin{gathered} 55.3 \\ (47.67) \end{gathered}$	$\begin{gathered} 51.00 \\ (43.96) \end{gathered}$	
2 (50)	2 (50)	599-10267						$\begin{gathered} 100 \\ (86.21) \end{gathered}$	$\begin{gathered} 94.3 \\ (81.29) \end{gathered}$	86.1 (74.23)

Key Valve may be oversizedOptimal valve size
Valve may be undersized

Valve Sizing Formulas

The following definitions apply in the following formulas:

Cv	Valve flow coefficient, U.S. GPM with $\mathrm{P}=1 \mathrm{psi}$
P_{1}	Inlet pressure at maximum flow, psia (abs.)
P_{2}	Outlet pressure at maximum flow, psia (abs.)
$\triangle \mathrm{P}$	$\mathrm{P}_{1}-\mathrm{P}_{2}$ at maximum flow, psi
Q	Fluid flow, U.S. GPM
Qa	Air or gas flow, standard cubic feet per hour (SCFH) at 14.7 psi and $60^{\circ} \mathrm{F}$
W	Steam flow, pounds per hour (lb./hr.)
S	Specific gravity of fluid relative to water @ $60^{\circ} \mathrm{F}$
G	Specific gravity of gas relative to air at 14.7 psi and $60^{\circ} \mathrm{F}$
T	Flowing air or gas temperature (${ }^{\circ} \mathrm{F}$)
K	$1+\left(0.0007 \mathrm{x}^{\circ} \mathrm{F}\right.$ superheat), for steam
V_{2}	Specific volume, cubic feet per pound, at outlet pressure P_{2} and absolute temperature ($\mathrm{T}+460$)
K_{r}	Viscosity correction factor for fluids (See Page I-4)

Formulas:	Remarks:
1. For liquids (water, oil, etc.): $\mathrm{Cv}=\mathrm{Q} \quad \sqrt{\frac{\mathrm{~S}}{\triangle \mathrm{P}}}$ $C v=K_{r} Q \sqrt{\frac{S}{\triangle P}}$	Specific gravity correction is negligible for water below $200^{\circ} \mathrm{F}$ (use $\mathrm{S}=1.0$). Use actual specific gravity S of other liquids at actual flow temperature. Use this for fluids with viscosity correction fact. Use actual specific gravity S for fluids at actual flow temperature.
2. For gases (air, natural gas, propane, etc.): $\begin{aligned} & C v=\frac{Q a \sqrt{G(T+460})}{1360 \sqrt{\triangle P\left(P_{2}\right)}}- \\ & C v=\frac{Q a \sqrt{G(T+460)}}{660 P_{1}} \end{aligned}$	Use this when P_{2} is greater than $1 / 2 \mathrm{P}_{1}$. Use this when P_{2} is less than or equal to $1 / 2 \mathrm{P}_{1}$.
3. For steam (saturated or superheated): $\begin{aligned} & C v=\frac{W K}{2.1 \sqrt{\triangle P\left(P_{1}+P_{2}\right)}} \\ & C v=\frac{W K}{1.82 P_{1}} \end{aligned}$	Use this when P_{2} is greater than $1 / 2 P_{1}$. Use this when P 2 is less than or equal to $1 / 2 \mathrm{P}_{1}$.
4. For vapors other than steam: $C v=\frac{W K}{63.4} \sqrt{\frac{V_{2}}{\triangle P}}$	When P_{2} is less than or equal to $1 / 2 P_{1}$, use the value of $1 / 2 P_{1}$ in place of P and use P_{2} corresponding to $1 / 2 P_{1}$ when determining specific volume V_{2}.

Viscosity Factors

The relationship between kinematic and absolute viscosity:
Centistoke =
Centipoise
Specific Gravity

Saybolt* Univ Seconds (S.S.U.)	Engler Time Seconds	Kinematic Viscosity	Correction Factors
46,350	-	10,000	-
37,080	-	8,000	-
27,810	-	6,000	-
18,540	-	4,000	-
13,900	-	3,000	-
11,590	-	2,500	-
9,270	-	2,000	1.93
6,950	10,800	1,500	1.90
4,635	7,100	1,000	1.82
3,708	5,700	800	1.78
2,781	4,250	600	1.74
1,854	2,820	400	1.67
1,390	2,120	300	1.63
1,159	1,760	250	1.61
927	1,400	200	1.57
695	1,050	150	1.43
464	700	100	1.45
371	555	80	1.42
278	420	60	1.37
186	290	40	1.30
141	225	30	1.25
119	191	25	1.22
97.8	157	20	120
77.4	127	15	1.16
58.9	97	10	1.11
52.1	85.5	8	1.08
45.6	76.0	6	1.07
39.1	67.5	4	1.05
36.0	62.5	3	1.03
32.6	58.0	2	-
31.6	55.5	1.5	-
$31.3 \leftarrow$ PURE WATER AT $60^{\circ} \mathrm{F} \rightarrow 1.1$			-

Chart Note
*Redwood time (seconds) approximately same as S.S.U.

Specific Gravity of Water

Temp $\mathbf{T}\left({ }^{\circ} \mathrm{F}\right)$	Abs. Pressure	Specific Gravity - S $\left(\mathbf{W}=62.4 \mathrm{lb} . / \mathrm{ft} .^{3} @\right.$ 60 $\left.{ }^{\circ} \mathrm{F}\right)$	$\sqrt{\mathrm{S}}$
60	-	1.000	1.000
100	-	0.993	0.999
150	-	0.981	0.985
200	-	0.963	0.981
250	30	0.942	0.971
300	67	0.920	0.959
350	135	0.891	0.944
400	247	0.860	0.927
450	423	0.827	0.910

Sizing Formulas and Tables

Process Formulas

For Heating or Cooling Water:
GPM =
Btu/hr.
(${ }^{\circ}$ F water temp. rise or drop $\times 500$)
GPM = \qquad
${ }^{\circ} \mathrm{F}$ water temperature change
($\mathrm{H}=$ change in enthalpy of air expressed in Btu/lb. of air)
For Heating Water with Steam:
lbs. steam $/ \mathrm{hr}$. $=0.50 \times$ GPM $\times\left({ }^{\circ} \mathrm{F}\right.$ water temp. rise $)$
For Heating or Cooling Water:
$\mathrm{GPM}_{1}=\mathrm{GPM}_{2} \times \quad\left({ }^{\circ} \mathrm{F}\right.$ water ${ }_{2}$ temp. rise or drop)
${ }^{\circ} \mathrm{F}$ water ${ }_{1}$ temp. drop
For Heating Air with Steam Coils:
lbs. steam $/ \mathrm{hr}$. $=1.08 \times\left({ }^{\circ} \mathrm{F}\right.$ air temp. rise $) \times \mathrm{CFM}$
1000
For Heating Air with Water Coils:
GPM $=2.16 \times \frac{\mathrm{CFM} \times\left({ }^{\circ} \mathrm{F} \text { air temp. rise }\right)}{1000 \times\left({ }^{\circ} \mathrm{F} \text { water }{ }_{1} \text { temp. drop }\right)}$

For Radiation:

lbs. steam/hr. $=0.24 \times \mathrm{ft} .^{2}$ EDR (Low pressure steam)
EDR = Equivalent Direct Radiation
1 EDR (steam) $=240$ BTU/Hr. (Coil Temp. $=215^{\circ} \mathrm{F}$)
1 EDR (water) $=200 \mathrm{BTU} / \mathrm{Hr}$. (Coil Temp. $=197^{\circ} \mathrm{F}$)
$\mathrm{GPM}=\frac{\mathrm{ft} .{ }^{2} \mathrm{EDR}}{50}$
(Assume $20^{\circ} \mathrm{F}$ water TD)

MZ Series

Valve Size	2-way	3-way
	Electronic	
Normally Open		
1/2", Cv ≤ 1.6	$60 \mathrm{psi}(414 \mathrm{kPa})$	$25 \mathrm{psi}(172 \mathrm{kPa})$
$1 / 2$ ", Cv ≤ 4	$35 \mathrm{psi}(241 \mathrm{kPa})$	$15 \mathrm{psi}(103 \mathrm{kPa})$
$3 / 4$ to 1 ", $\mathrm{Cv} \leq 10$	$30 \mathrm{psi}(207 \mathrm{kPa})$	$10 \mathrm{psi}(69 \mathrm{kPa})$
Normally Closed		
1/2", Cv ≤ 1.6	$70 \mathrm{psi}(482 \mathrm{kPa})$	$70 \mathrm{psi}(482 \mathrm{kPa})$
1/2", Cv ≤ 4	$40 \mathrm{psi}(276 \mathrm{kPa})$	$40 \mathrm{psi}(276 \mathrm{kPa})$
$3 / 4$ to 1 " $\mathrm{Cv} \leq 10$	$30 \mathrm{psi}(207 \mathrm{kPa})$	$30 \mathrm{psi}(207 \mathrm{kPa})$

Table Note: For 3-way valve close-offs, use this chart to determine upper port (NC) and bottom port (NO).

MT Series

2-Way Valve Size	Pneumatic			Electronic	
	599-01088			SQS	SSC
	3-8 psi	8-13 psi	10-15 psi		
	Normally Open				
1/2", Cv ≤ 1.6	95 psi (655 kPa)	$45 \mathrm{psi}(310 \mathrm{kPa})$	$20 \mathrm{psi}(138 \mathrm{kPa})$	160 psi (1103 kPa)	120 psi (868 kPa)
1/2", Cv ≤ 4	$45 \mathrm{psi}(310 \mathrm{kPa})$	$25 \mathrm{psi}(172 \mathrm{kPa})$	$15 \mathrm{psi}(103 \mathrm{kPa})$	$85 \mathrm{psi}(586 \mathrm{kPa})$	$65 \mathrm{psi}(448 \mathrm{kPa})$
$3 / 4$ to 1 ', Cv ≤ 10	35 psi (241 kPa)	$10 \mathrm{psi}(69 \mathrm{kPa})$	-	$70 \mathrm{psi}(482 \mathrm{kPa})$	$55 \mathrm{psi}(379 \mathrm{kPa})$
	Normally Closed				
1/2", Cv ≤ 1.6	40 psi (276 kPa)	$95 \mathrm{psi}(655 \mathrm{kPa})$	$95 \mathrm{psi}(655 \mathrm{kPa})$	95 psi (655 kPa)	95 psi (655 kPa)
1/2", Cv ≤ 4	28 psi (193 kPa)	$50 \mathrm{psi}(345 \mathrm{kPa})$	$50 \mathrm{psi}(345 \mathrm{kPa})$	$50 \mathrm{psi}(345 \mathrm{kPa})$	$50 \mathrm{psi}(345 \mathrm{kPa})$
$3 / 4$ to 1 ', Cv ≤ 10	18 psi (124 kPa)	$40 \mathrm{psi}(276 \mathrm{kPa})$	40 psi (276 kPa)	$40 \mathrm{psi}(276 \mathrm{kPa})$	40 psi (276 kPa)

3-Way Valve Size	Pneumatic			Electronic	
	599-01088			SQS	SSC
	3-8 psi	8-13 psi	10-15 psi		
	Normally Open				
1/2", Cv ≤ 1.6	95 psi (655 kPa)	$45 \mathrm{psi}(310 \mathrm{kPa})$	20 psi (138 kPa)	160 psi (1103 kPa)	$95 \mathrm{psi}(655 \mathrm{kPa})$
1/2", Cv ≤ 4	$45 \mathrm{psi}(310 \mathrm{kPa})$	$25 \mathrm{psi}(172 \mathrm{kPa})$	15 psi (103 kPa)	$85 \mathrm{psi}(586 \mathrm{kPa})$	$50 \mathrm{psi}(379 \mathrm{kPa})$
$3 / 4$ to 1 ', $\mathrm{Cv} \leq 10$	$35 \mathrm{psi}(241 \mathrm{kPa})$	$10 \mathrm{psi}(69 \mathrm{kPa})$	-	$70 \mathrm{psi}(482 \mathrm{kPa})$	40 psi (276 kPa)
	Normally Closed				
1/2", Cv ≤ 1.6	40 psi (276 kPa)	$95 \mathrm{psi}(655 \mathrm{kPa})$	$120 \mathrm{psi}(827 \mathrm{kPa})$	$95 \mathrm{psi}(655 \mathrm{kPa})$	$95 \mathrm{psi}(655 \mathrm{kPa})$
1/2", Cv ≤ 4	$28 \mathrm{psi}(193 \mathrm{kPa})$	$50 \mathrm{psi}(345 \mathrm{kPa})$	$65 \mathrm{psi}(448 \mathrm{kPa})$	$50 \mathrm{psi}(345 \mathrm{kPa})$	$50 \mathrm{psi}(345 \mathrm{kPa})$
$3 / 4$ to 1 ", $\mathrm{Cv} \leq 10$	$18 \mathrm{psi}(124 \mathrm{kPa})$	$40 \mathrm{psi}(276 \mathrm{kPa})$	$50 \mathrm{psi}(345 \mathrm{kPa})$	$40 \mathrm{psi}(276 \mathrm{kPa})$	$40 \mathrm{psi}(276 \mathrm{kPa})$

Table Notes:
For 3-Way valve close-offs, use this chart to determine upper (NC) and bottom port (NO).
Normally open close-off pressures are at 20 psi actuator pressure.
Normally closed close-off pressures are at 0 psi actuator pressure.

SIEMENS

2-Way Valve Body Part No.	Valve Size in.	Flow Rate Cv	Close Off psi
599-10300 / 599-10300S		0.4	200
599-10301/ 599-10301S		0.63	200
599-10302 / 599-10302S		1.0	200
599-10303 / 599-10303S	$1 / 2$	1.6	200
599-10304 / 599-10304S	$1 / 2$	2.5	200
599-10305 / 599-10305S		4.0	200
599-10306 / 599-10306S		6.3	200
599-10307* 599-10307S*		10	200
599-10308 / 599-10308S		6.3	200
599-10309 / 599-10309S	314	10	200
599-10310 / 599-10310S	$3 / 4$	16	200
599-10311*/599-10311S*		25	200
599-10312 / 599-10312S		10	200
599-10313 / 599-10313S		16	200
599-10314 / 599-10314S	1	25	200
599-10315 / 599-10315S		40	200
599-10316*/599-10316S*		63	200
599-10317 / 599-10317S		16	200
599-10318 / 599-10318S		25	200
599-10319 / 599-10319S	1-1/4	40	200
599-10320 / 599-10320S		63	200
599-10321* 599-10321S*		100	200
599-10322 / 599-10322S		25	200
599-10323 / 599-10323S		40	200
599-10324 / 599-10324S	1-1/2	63	200
599-10325/599-10325S		100	200
599-10326*/599-10326S*		160	200
599-10327 / 599-10327S		40	200
599-10328 / 599-10328S	2	63	200
599-10329*/ 599-10329S*	2	100	200
599-10330 / 599-10330S		160	200

3-Way Valve Body Part No.	Valve Size in.	Flow Rate Cv	Close Off psi
599-10250	1/2	0.4	50
599-10251		0.63	50
599-10252		1.0	50
599-10253		2.5	50
599-10254		4.0	50
599-10255		10	50
599-10256	3/4	16	50
599-10257	1	10	50
599-10258		16	50
599-10259*		25	50
599-10260	1-1/4	16	40
599-10261		40	40
599-10262	1-1/2	16	40
599-10263		25	40
599-10264*		63	40
599-10265	2	25	40
599-10266*		40	40
599-10267		100	40

* Denotes a full-port valve with no flow optimizer insert.
* Denotes a full-port valve with no flow optimizer insert.

Electronic

$$		$\begin{aligned} & \text { SAX SR } \\ & \text { APC } \\ & 370 / 372 \end{aligned}$	$\begin{aligned} & \text { SAX NSR } \\ & \text { APC } \\ & 371 / 373 \end{aligned}$	$\begin{gathered} \text { SKD } \\ \text { APC } \\ 274-276 \end{gathered}$	$\begin{gathered} \text { SKB } \\ \text { APC } \\ 289-291 \end{gathered}$	$\begin{gathered} \text { SKC } \\ \text { APC } \\ 292-294 \end{gathered}$
Normally Open						
1/2	(15)	250 (1724)	250 (1724)	250 (1724)	250 (1724)	-
3/4	(20)	182 (1255)	211 (1456)	250 (1724)	250 (1724)	-
1	(25)	119 (821)	137 (945)	201 (1386)	250 (1724)	-
1-1/4	(32)	73 (503)	85 (586)	124 (855)	250 (1724)	-
1-1/2	(40)	47 (324)	55 (379)	80 (552)	250 (1724)	-
2	(50)	29 (200)	34 (235)	49 (338)	201 (1386)	-
2-1/2	(65)	23 (159)	26 (179)	38 (262)	153 (518)	-
3	(80)	15 (103)	17 (117)	25 (172)	101 (342)	-
4	(100)	-	-	-	-	65 (448)
5	(125)	-	-	-	-	42 (289)
6	(150)	-	-	-	-	29 (199)
Normally Closed						
1/2	(15)	250 (1724)	250 (1724)	250 (1724)	250 (1724)	-
3/4	(20)	234 (1614)	250 (1724)	250 (1724)	250 (1724)	-
1	(25)	137 (945)	159 (1097)	203 (1400)	250 (1724)	-
1-1/4	(32)	80 (552)	92 (634)	117 (807)	250 (1724)	-
1-1/2	(40)	50 (345)	57 (393)	73 (503)	208 (1434)	-
2	(50)	30 (207)	35 (241)	44 (303)	126 (869)	-
2-1/2	(65)	23 (159)	26 (179)	34 (234)	97 (668)	-
3	(80)	15 (103)	17 (117)	22 (152)	63 (434)	-
4	(100)	-	-	-	-	39 (268)
5	(125)	-	-	-	-	25 (172)
6	(150)	-	-	-	-	17 (117)

Electronic High Pressure Close-off

$\begin{aligned} & \text { Valve Size } \\ & \text { in. } \quad(\mathrm{mm}) \end{aligned}$		Electro-Hydraulic 24 VAC	
		SKD	SKC
		Normally Open	
2-1/2	(65)	200 (1378)	-
3	(80)	200 (1378)	-
4	(100)	-	200 (1378)
5	(125)	-	200 (1378)
6	(150)	-	200 (1378)
		Normally Closed	
2-1/2	(65)	200 (1378)	-
3	(80)	200 (1378)	-
4	(100)	-	200 (1378)
5	(125)	-	200 (1378)
6	(150)	-	200 (1378)

Table Notes:
All values within table are in psi (kPa) unless otherwise indicated..

SIEMENS

Pneumatic

Valve Size in. (mm)	Spring Range							
	3 to $8 \mathrm{psi}(21$ to 55 kPa$)$					10 to 15 psi (69 to 103 kPa)		
	4" Actuator	8" Actuator		12" Actuator		4" Actuator	8" Actuator	12" Actuator
	$\begin{gathered} 15 \mathrm{psi} \\ (103 \mathrm{kPa}) \end{gathered}$	$\begin{gathered} 15 \mathrm{psi} \\ (103 \mathrm{kPa}) \end{gathered}$	$\begin{gathered} 30 \mathrm{psi} \\ (207 \mathrm{kPa}) \end{gathered}$	$\begin{gathered} 15 \mathrm{psi} \\ (103 \mathrm{kPa}) \end{gathered}$	$\begin{gathered} 30 \mathrm{psi} \\ (207 \mathrm{kPa}) \end{gathered}$	$\begin{gathered} 0 \mathrm{psi} \\ (0 \mathrm{kPa}) \end{gathered}$	$\begin{gathered} 0 \mathrm{psi} \\ (0 \mathrm{kPa}) \end{gathered}$	$\begin{gathered} 0 \mathrm{psi} \\ (0 \mathrm{kPa}) \end{gathered}$
	Normally Open					Normally Closed		
1/2 (15)	142 (979)	250 (1724)	250 (1724)	-	-	236 (1627)	250 (1724)	-
3/4 (20)	80 (552)	231 (1593)	250 (1724)	-	-	155 (1069)	250 (1724)	-
1 (25)	52 (359)	150 (1034)	250 (1724)	250 (1724)	250 (1724)	91 (627)	250 (1724)	250 (1724)
1-1/4 (32)	32 (221)	93 (641)	250 (1724)	250 (1724)	250 (1724)	52 (359)	148 (1020)	250 (1724)
1-1/2 (40)	20 (138)	60 (414)	198 (1365)	205 (1413)	250 (1724)	32 (331)	92 (634)	250 (1724)
2 (50)	12 (83)	37 (255)	123 (848)	130 (896)	250 (1724)	20 (138)	55 (379)	185 (1275)
2-1/2 (65)	-	31 (213)	100 (689)	95 (655)	250 (1724)	-	36 (248)	114 (786)
3 (80)	-	20 (138)	66 (444)	63 (434)	200 (1378)	-	23 (158)	74 (610)
4 (100)	-	-	-	40 (275)	129 (889)	-	-	46 (317)
5 (125)	-	-	-	26 (179)	82 (565)	-	-	29 (199)
6 (150)	-	-	-	18 (124)	57 (393)	-	-	20 (137)

Table Notes:
All values within table are in psi (kPa) unless otherwise indicated.
For 3-Way valve close-offs, use this chart to determine upper port (NC) and bottom port (NO).
Normally open close-off pressures are at 15 psi actuator pressure.
Normally closed close-off pressures are at 0 psi actuator pressure.

Pneumatic High Pressure Close-off

Valve Size in. (mm)	Spring Range			
	3 to 8 psi (21 to 55 kPa)		10 to 15 psi (69 to 103 kPa)	
	8" Actuator	12" Actuator	8" Actuator	12" Actuator
	Normally Open		Normally Closed	
2-1/2 (65)	200 (1378)	-	200 (1378)	-
3 (80)	200 (1378)	-	200 (1378)	-
4 (100)	-	200 (1378)	-	200 (1378)
5 (125)	-	200 (1378)	-	200 (1378)
6 (150)	-	200 (1378)	-	200 (1378)

Table Notes:
All values within table are in psi (kPa) unless otherwise indicated.

2-1/2 to 8-inch Cast Iron Flange Dimensions (as defined by ANSI standard B16.1)

ANSI Class 125

Nominal Pipe Size	Flanges		Drilling		Bolting		Length of Machine Bolts F
	Flange Diameter	Flange Thickness	Diameter of Bolt Circle	Diameter of Bolt Holes	Number of Bolts	Diameter of Bolts	
	A	B	D	E			
2-1/2"	$7{ }^{\text {7 }}$	11/16"	5-1/2"	$3 / 4$ "	4	5/8"	2-1/2"
3"	7-1/2"	3/4"	$6 "$	$3 / 4 "$	4	5/8"	2-1/2"
4"	$9{ }^{9}$	15/16"	7-1/2"	$3 / 4 "$	8	5/8"	3"
5"	10"	15/16"	8-1/2"	7/8"	8	$3 / 4 "$	3"
$6 "$	11	$1{ }^{\prime \prime}$	9-1/2"	7/8"	8	3/4"	3-1/4"
8"	13-1/2"	1-1/8"	11-3/4"	7/8"	8	7/8"	3-1/2"

ANSI Class 250

Nominal Pipe Size	Flanges			Drilling		Bolting		Length of Machine Bolts
	Flange Diameter	Flange Thickness	Diameter of Raised Face	Diameter of Bolt Circle	Diameter of Bolt Holes	Number of Bolts	Diameter of Bolts	
	A	B	C	D	E			F
2-1/2"	7-1/2"	$1 "$	4-15/16"	5-7/8"	7/8"	8	3/4"	3-1/4"
3"	8-1/4"	1-1/8"	5-11/16"	6-5/8"	7/8"	8	3/4"	3-1/5"
$4 "$	10"	1-1/4"	6-15/16"	7-7/8"	7/8"	8	3/4"	3-3/4"
5"	11"	1-3/8"	8-5/16"	9-1/4"	7/8"	8	3/4"	4"
$6 "$	12-1/2"	1-7/16"	9-11/16"	10-5/8"	7/8"	12	3/4"	4"
8"	15 "	1-5/8"	11-15/16"	$13 "$	$1 "$	12	7/8"	4-1/2"

SIEMENS

Vacuum Inches Hg	Absolute Pressure psi	Temperature degrees Fahrenheit
29.74	0.0886	32
29.67	0.1217	40
29.56	0.1780	50
29.40	0.2562	60
29.18	0.3626	70
28.89	0.505	80
28.50	0.696	90
28.00	0.946	100.00
27.88	1	101.83
25.85	2	126.15
23.81	3	141.52
21.78	4	153.01
19.74	5	162.28
17.70	6	170.06
15.67	7	176.85
13.63	8	182.86
11.60	9	188.27
9.56	10	193.22
7.52	11	197.75
5.49	12	201.96
3.45	13	205.87
1.42	14	209.55

Gauge Pressure psi	Absolute Pressure psi	Temperature degrees Fahrenheit
0.0	14.70	212.0
0.3	15	213.0
1.3	16	216.3
2.3	17	219.4
3.3	18	222.4
4.3	19	225.2
5.3	20	228.0
6.3	21	230.6
7.3	22	233.1
8.3	23	235.5
9.3	24	237.8
10.3	25	240.1
11.3	26	242.2
12.3	27	244.4
13.3	28	246.4
14.3	29	248.4
15.3	30	250.3
16.3	31	252.2
17.3	32	254.1
18.3	33	255.8
19.3	34	257.6
20.3	35	259.3
21.3	36	261.0
22.3	37	262.6
23.3	38	264.2
24.3	39	265.8
25.3	40	267.3
26.3	41	268.7
27.3	42	270.2
28.3	43	271.7
29.3	44	273.1

Gauge Pressure psi	Absolute Pressure psi	Temperature degrees Fahrenheit
30.3	45	274.5
31.3	46	275.8
32.3	47	277.2
33.3	48	278.5
34.3	49	279.8
35.3	50	281.0
36.3	51	282.3
37.3	52	283.5
38.3	53	284.7
39.3	54	285.9
40.3	55	287.1
41.3	56	288.2
42.3	57	289.4
43.3	58	290.5
44.3	59	291.6
45.3	60	292.7
46.3	61	293.8
47.3	62	294.9
48.3	63	295.9
49.3	64	297.0
50.3	65	298.0
51.3	66	299.0
52.3	67	300.0
53.3	68	301.0
54.3	69	302.0
55.3	70	302.9
56.3	71	303.9
57.3	72	304.8
58.3	73	305.8
59.3	74	306.7
60.3	75	307.6
61.3	76	308.5
62.3	77	309.4
63.3	78	310.3
64.3	79	311.2
65.3	80	312.0
66.3	81	312.9
67.3	82	313.8
68.3	83	314.6
69.3	84	315.4
70.3	85	316.3
71.6	86	317.1
72.3	87	317.9
73.3	88	318.7
74.3	89	319.5
75.3	90	320.3
76.3	91	321.1
77.3	92	321.8
78.3	93	322.6
79.3	94	323.4
80.3	95	324.1
81.3	96	324.9
82.3	97	325.6
83.3	98	326.4
84.3	99	327.1
85.3	100	327.8
87.3	102	329.3
89.3	104	330.7
91.3	106	332.0
93.3	108	333.4
95.3	110	334.8

Gauge Pressure psi	Absolute Pressure psi	Temperature degrees Fahrenheit
97.3	112	336.1
99.3	114	337.4
101.3	116	338.7
103.3	118	340.0
105.3	120	341.3
107.3	122	342.5
109.3	124	343.8
111.3	126	345.0
113.3	128	346.2
115.3	130	347.4
117.3	132	348.5
119.3	134	349.7
121.3	136	350.8
123.3	138	352.0
125.3	140	353.1
127.3	142	354.2
129.3	144	355.3
131.3	146	356.3
133.3	148	357.4
135.3	150	358.5
137.3	152	359.5
139.3	154	360.5
141.3	156	361.6
143.3	158	362.6
145.3	160	363.6
147.3	162	364.6
149.3	164	365.6
151.3	166	366.5
153.3	168	367.5
155.3	170	368.5
157.3	172	369.4
159.3	174	370.4
161.3	175	371.3
163.3	178	372.2
165.3	180	373.1
167.3	182	374.0
169.3	184	374.9
171.3	186	375.8
173.3	188	376.7
175.3	190	377.6
177.3	192	378.5
179.3	194	379.3
181.3	196	380.2
183.3	198	381.0
185.3	200	381.9
190.3	205	384.0
195.3	210	386.0
200.3	215	388.0
205.3	220	389.9
210.3	225	391.9
215.3	230	393.8
220.3	235	395.6
225.3	240	397.4
230.3	245	399.3
235.3	250	401.1
245.3	260	404.5
255.3	270	407.9
265.3	280	411.2
275.3	290	414.4
285.3	300	417.5

Introduction

When selecting a butterfly valve for water applications you must first determine the requirements of the valve assembly. The first question to ask is, "Will the valve be used for "Isolation" or "Proportional Control" of the fluid?" and "Does the application require a 2-way or 3-way assembly?"

2-way and 3-way Isolation Valves

When selecting a valve for isolation purposes, it is seldom necessary to calculate flow requirements beyond the published Cvs (flow coefficients)* of the valve. These valves are typically line size and require the lowest pressure drop available in the full open position. It may be possible to supply a valve smaller than the actual line size and still obtain a low-pressure drop. However, the cost of reducing flanges will typically offset any savings incurred by reducing the valve size. The 2- and 3-way Flow Coefficient charts, below and on I-16, provide Cv values for Siemens butterfly valves.

2-way and 3-way Proportional Control Valves

Control Valves are the most important element of a fluid handling system and proper selection of these valves is crucial for efficient operation of the process. When sizing butterfly valves for control, it is imperative to have certain requirements of the system.

You must have:

- Maximum flow requirement: This would be equivalent to the design flow and provided or converted to gallons per minute.
- Maximum pressure drop allowed: The Consulting Engineer usually provides this factor and are typically 3 to 5 psi max. However, the pressure drop should never exceed one half of the inlet pressure.
Without these two factors, selection of a control valve would be simply a guess.

2-way Flow Coefficients (Cvs)

Size	Degrees Open								
	10°	20°	30°	40°	50°	60°	70°	80°	90°
2"	0	1.3	5	14	26	40	52	59	60
2-1/2"	0	1.4	6	21	44	74	107	138	151
$3 "$	0.7	1.5	8	29	67	115	175	234	262
4"	1.7	15	48	107	196	318	463	589	647
$5 "$	3	32	99	206	362	579	832	1045	1141
$6 "$	4	47	145	295	510	810	1160	1450	1580
8"	6	84	239	450	751	1190	1754	2385	2892
10"	9	133	360	652	1064	1683	2524	3596	4593
12"	12	192	509	899	1449	2288	3470	5085	6682
$14 "$	75	340	770	1400	2200	3400	5600	7900	10000
$16 "$	100	440	1000	1800	2800	4500	7400	10800	13000
18"	130	570	1300	2300	3600	5800	9600	15000	18000
20"	150	710	1600	2900	4600	7200	12000	18400	22000

Table Note

- Flow Coefficients $(\mathrm{Cv})=$ The amount of water in gallons per minute, at $60^{\circ} \mathrm{F}$ that will pass through a given orifice with a one pound pressure drop.

Butterfly Valves

3- way Flow Coefficients (Cvs)

Size	Degrees Open									
Run	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
Branch	90°	80°	70°	60°	50°	40°	30°	20°	10°	0°
2"	54	53	49	43	38	40	44	52	57	58
2-1/2"	114	108	93	74	52	64	78	102	126	135
3"	188	178	148	114	55	95	120	165	210	229
4"	385	374	348	313	150	295	345	419	482	511
5"	642	627	600	563	270	549	630	740	829	870
$6 "$	935	909	867	809	483	780	895	1051	1180	1242
8"	1688	1573	1424	1271	796	1175	1367	1661	1994	2254
10"	2667	2430	2132	1856	1142	1685	1971	2439	3046	3570
12"	3938	3531	3019	2579	1629	2312	2715	3401	4368	5240
14"	5109	4825	4416	3719	2433	3514	3992	5259	6342	7173
$16 "$	6735	6462	5832	4904	3213	4498	5265	6943	8567	9410
18"	9060	8724	7650	6372	4433	5778	6815	9056	11695	12785
20"	11229	10799	9545	7901	5619	7339	8449	11309	14423	15770

Table Notes

- Three-way valve assemblies Cvs are corrected from published two-way Cvs to account for line losses generated by the tee, and are calculated values only. The pipe friction losses are a function of fluid velocity through the pipe and the three-way Cvs listed are apparent for full flow through the pipe. Operation at less than full capacity (lower velocity) will increase the actual Cvs

Sizing Example

With this information and assuming the media is water or a similar media (glycol/water mix), a control valve can be properly sized for the application by following these steps:

1. Calculate the required Cv : Using the following formula and the information required above, you could calculate the flow coefficient (Cv) of the control valve.

Whereas: GPM = The maximum flow requirement $\mathrm{P}=$ The max. pressure drop (5 psi)

Example

The line size is 6 " and the required flow is 600 GPM with a maximum pressure drop of 5 psi . The square root of 5 is equal to 2.236. When divided into 600, the required Cv for this application is: 268.336 .
2. Select your valve size: Using the Flow Coefficients (Cvs), select the appropriate valve size. If your required Cv is in between valve sizes, choose the larger size valve. When selecting a 3-way assembly, the Cv of the run should be selected.

Example

The line size is 6 " and the calculated required Cv is 268.336. The valve selected is a 4 " with a rated Cv of 647.

Butterfly valves are high capacity valves and require very little pressure drop to control flow, which allows for reduction from the line size when sizing valves. This pipe reduction affects the flow characteristics and will reduce the effective Cv of the valve. This phenomenon is known as the piping geometry factor (Fp), which brings us to the final step in valves sizing.
3. Piping Geometry Factor: Reducing pipe sizes for installation of a smaller than pipe size valves will reduce the effective Cv of the valve. The greater the pipe reduction, the greater loss of Cv. Using the Adjusted Cvs for Piping Geometry Factors chart, verify that the corrected Cv, for the valve size selected, meets or exceeds the required Cv calculated in step 2.
Note: 3-way Cvs have already been adjusted.

Adjusted Cvs for Piping Geometry Factors

Size	Pipe Size													
	2-1/2"	3"	4"	5"	6"	8"	10"	12"	14"	16"	18"	20"	22"	24"
2"	47	38												
2-1/2"		125	79											
3"			189	149										
4"				505	408									
5"					947	685								
$6 "$						1138	916							
8"							2256	1822						
10"								3812	3123					
12"									5747	4811				
14"										8900	7600			
16"											11830	10140		
18"												16560	14580	
20"													20460	18260

6-inch 3-way Assembly at Constant Valve Differential Pressure
(corrected for tee loss)

SIEMENS

Terminology

Absolute Pressure - Absolute pressure is referenced to a theoretical perfect vacuum. At standard atmospheric pressure, absolute pressure may be calculated by adding 14.7 psi to the observed gauge pressure.

Ambient Temperature Rating - Ambient temperature refers to the temperature of the air surrounding the device.
Angled Body - A two way valve body that has connection points at right angles to each other.

Butterfly Valve - A valve utilizing a disk rotating on a shaft to provide control and close off. Alternately, a check valve utilizing two semi-circular hinged plates to permit flow in one direction only.

Booster Pump - A pump used in secondary loops of hydronic systems to provide additional flow for that section of the system.

Cavitation - The forming and imploding of cavities in a liquid due to rapid pressure changes, producing shock waves and cyclic stresses that can lead to undesirable noise and/or surface fatigue damage.

Close-off Rating - The maximum differential pressure, inlet to outlet, that a valve will close off against while fluid is flowing to a given leakage rate (tightness) criteria. In a stroke valve, the primary determinants are the force available from the actuator, the diameter of the plug, and the valve design. In a rotary valve, such as a ball valve, the primary determinant is typically the seal design as the torque of the actuator has little effect.

Close-off Rating of Three Way Valves - The maximum pressure difference between either of the two inlet ports and the outlet port for mixing valves, or the pressure difference between the inlet port and either of the two outlet ports for diverting valves.

Contoured Plug - In a globe valve, a contoured plug uses its peripheral shape to affect a desired flow characteristic. This is typically linear, equal percentage, or a modification of these. These are differentiated from V-plugs, basket plugs, cage plugs, and the like by the fact that the media flows around the plug and not through it.
Controlled Medium - The controlled medium is the material that is being conveyed and controlled though the device. In typical HVAC systems this includes air, water, and/or steam. It may also include fuel oil, natural gas, refrigerants, etc.
Critical Pressure Drop - The maximum pressure drop across a valve at which gasses and vapors will follow standard flow calculations. Pressure drops greater than this produced what is known as "choked flow" and sizing criteria will no longer accurately predict the volumetric flow.

Design Conditions - The assumed environmental variables that define the performance limits required of a HVAC system. This may include maximum and minimum outside air temperatures, expected solar and other thermal loads, occupancy levels, etc.
Direction of Flow - The flow of a controlled fluid through the valve is usually represented by an arrow on the valve body. If the flow of the fluid goes against the indicated direction, the disk can slam into the seat as it approaches the closed position. The result is excessive wear, hammering, and oscillations. Additionally the actuator must work harder to reopen the closed valve since it must overcome the pressure exerted by the fluid on top of the disc, rather than have the fluid assist in opening the valve by exerting pressure under the disc.
Diverting Valve - A three way valve that has one inlet and two outlets. Water entering the inlet port is diverted to either of the two outlet ports in any proportion desired by moving the valve stem. These valves are not commonly use in modern control loops.

End Fitting - The part of the valve body that connects to the piping. Union, screwed, flared, sweat and flanged are typical examples of end fittings.
Equalinear Flow - Valve Cv vs travel position is approximately mid-way between that of linear and equal percentage.
Equal Percentage Flow Characteristic - An equal percentage flow characteristic is one in which a flow rate change is proportional to the flow rate just prior to the change in valve position. Equal increments of valve travel result in equal percentage changes to the existing flow rate. Flow capacity increases exponentially with valve stem travel.

Flanged End Connections - A valve that connects to a pipe by bolting a flange on the valve to a flange on the pipe. Flanged connections are often used on larger valves, typically over 2 ".

Flashing - In the context of control valves, flashing is related to cavitation, but the mechanics are slightly different. Flashing occurs when a liquid's environment causes a rapid phase change from liquid to gaseous phases. With flashing, the volume of vapor is much greater than the volume of liquid, and rapidly accelerates the remaining liquid droplets, which forcefully impact the mechanical components of the valve and pipes, causing damage. This situation can be calculated by knowing the pressures and temperatures involved, as well as the vapor pressure of the liquid at those temperatures. Cavitation often occurs in environments that have not yet reached the point of flashing, due to fluid flow dynamics and velocities.

Terminology

Flow Characteristic - The relation between volumetric flow and valve position.

Flow Coefficient - The flow coefficient is the constant that relates volumetric flow, differential pressure, and specific gravity of a fluid through a metering device. Cv is the flow coefficient in imperial units. For liquids through a standard orifice it is calculated to be equal to the volumetric flow in gallons per minute times the square root of the specific gravity divided by the square root of the differential pressure in psi. For water systems the specific gravity can be assumed to be 1 , therefore it is often simplified to GPM divided by the square root of ΔP. For HVAC applications, a control valve closely follows this orifice model.

Flow Rate - The volume of media conveyed per unit of time. Typical US units are gallons per minute (GPM) for water and pounds per hour (\#/hr) for steam.

FPM — Feet per minute.
Full Port — Maximum flow capacity possible for a particular ball valve orifice. In a ball valve, this typically refers to a valve with no flow characterizer or restrictor.

Gauge Pressure - Pounds per square inch (PSI) as read on a gauge face. This differs from Absolute Pressure in that it is relative to the current ambient pressure, not a fixed reference such as absolute vacuum. Gauge pressure, therefore, uses the local ambient pressure as its zero point (14.7 psia at sea level and standard conditions).

GPM — Gallons per minute.
Incompressible - Description of liquids, because their change in volume due to pressure is negligible.
Laminar Flow - Also known as viscous or streamlined flow. A non-turbulent flow regime in which the stream filaments glide along the pipe axially with essentially no transverse mixing. This is usually associated with viscous liquids. The area inside a valve is typically turbulent - the opposite of laminar.

Load - A demand on the mechanical equipment in an HVAC system.
Load Change - A change in the building cooling or heating requirements as a result of air temperature variations, caused by wind, occupants, lights, machinery, solar effect, etc.

Mixing Valve - A three way valve having two inlets and one outlet. The proportion of fluid entering each of the two inlets can be varied by moving the valve stem. These valves are typically not suitable for diverting applications.

Normally Closed (N.C.) - Condition of the valve upon loss of power or control signal to the actuator. Also as relates to a stroke valve body that has been manufactured as a N.C. valve body. In stroke valves, this is typically the valve's state when the stem is in the "up" position.

Normally Open (N.O.) - Condition of the valve upon loss of power or control signal to the actuator. Also as relates to a stroke valve body that has been manufactured as a N.O. valve body. In stroke valves, this is typically the valve's state when the stem is in the "up" position.
NPT - A pipe thread standard describing tapered pipe threads, common in North America (National Pipe thread Tapered).

Packing - Seals used around the valve stem so that the controlled medium will not leak outside the valve.

Port - Opening (inlet or outlet) that allows flow through a valve body.

Positive Positioner - A device that eliminates the actuator shaft positioning error due to load on the valve body. This device is closed loop, and applies the necessary force required to positively position the valve stem to a referenced (commanded) position.
Pressure Drop - The difference in pressure between the inlet and outlet ports of the control valve, commonly refered to as ΔP (delta P).

PSI - Pounds per square inch.
PSIA - Pounds per square inch absolute.
(Also see Absolute Pressure.)
PSIG - Pounds per square inch gauge.
(Also see Gauge Pressure.)
Rangeability - The ratio of the maximum controllable flow to the minimum controllable flow. As an example, a valve with a rangeability of 50 to 1 having a total flow capacity of 100 GPM, fully open, will be able to control flow accurately down to 2 GPM.

Reduced port - A smaller flow capacity that is possible for the particular end fitting.

Reducer - A pipe fitting that is used to couple a pipe of one size to a pipe of a different size. An increaser may be used when the pipe sizes are reversed.

Saturated Steam - Steam which is at its lowest possible temperature at a given pressure without a phase change to liquid.

Screwed- end connection - A valve body with a threaded pipe connection, usually female NPT threads, in valve bodies through 2 ".

Terminology

Seat - The stationary portion of the valve which seals the valve, thus prevents flow, when in full contact with the movable ball, plug or disc.

Static Pressure rating - The maximum pressure that the valve body will tolerate per a defined standard. The standards may define the pressure at temperatures other than that observed, so one must understand the standard to understand the actual pressure rating for the given application. Common pressure standards for HVAC valves in North America include ANSI $(125,250)$ and WOG $(300,600)$, but others such as CWP are sometimes used.

Stem - The cylindrical shaft of a control valve moved by an actuator, to which the throttling plug, ball or wafer disc is attached.

Stroke - The total distance that a linear valve stem travels or moves. It is also known as lift.

Superheated Steam - Steam at a temperature higher than saturation temperature at the given pressure.

System Pressure Drop - The sum of all pressure drops in a Hydronic system.

Three Way Valve - A valve body with one inlet and two outlets or two inlets and one outlet.

Tight Shut-off - A valve body with no flow or leakage in a closed position. This is relative to the defined tightness of the seal, usually defined by a measurement standard. The most common standard is ANSI/FCI $70-2$, which classifies "tightness" from Class I to Class VI. Class I is non-defined leakage, Class II through Class IV are descriptive based on leakage as a percent of total capacity, and Class V and Class VI are descriptive based on leakage as a finite rate per inch of orifice diameter. Since the criteria and testing method for Class II - IV are significantly different than Class V - VI, these groups cannot be directly compared.

Trim - All parts of the valve which are in contact with the flowing media, but are not part of the valve shell or casting. Ball, stem, disc, plug, and seat are all considered trim components.

Turndown - Ratio between the maximum usable flow and the minimum controllable flow. Turndown is usually less than Rangeability, and cannot be applied to a valve exclusive of the specific application it is placed in, It is a function of the valve, actuator, piping, coil, and all other system parameters that determine the maximum usable flow. Since the valve only has reasonable control over one part of the ratio, the minimum controllable flow, this is not a good criteria for evaluating valve quality.

Two-way Valve - A valve body with a single flow path one inlet and one outlet.

Valve - A control device which will vary the rate of flow of a medium such as water or steam.

Valve Actuator - A device that uses a source of power to position or operate a valve, sometimes also called a valve operator. The source of power may be anything, examples include manual (via a hand wheel), pneumatic, or electronic.

Valve Body - The portion of the valve casting through which a controlled medium flows.

Valve Disc - The movable part of a butterfly valve which makes contact with the seat when the valve is closed.

Valve Flow Characteristic - The relationship between the stem travel, expressed in percent of travel, and the flow of the fluid through the valve, expressed in percent of full flow or gallons per minute.

Valve Guide - The part of a globe valve throttling plug that keeps the disc aligned with the valve seat.

Velocity - The rate of movement for air or water, distance per unit time.

Viscous - Having a relatively high resistance to flow.
Volumetric Air Flow - Area x Velocity.
Wire Draw - The process where high velocity media erodes a path across the mechanical components of a valve. This typically occurs in a stroke valve when the valve is operated primarily with the plug very close to the seat, causing very high velocities of media across the plug and seat. The damage appears as if a wire has been drawn across the components. This differs from the other typical valve mechanical damage modes - cavitation and flashing - where the surface appears to have been pulled away as or struck by very small particles, respectively.

Introduction

The size and quantity of actuators required depends on several damper torque factors:

- Type of damper seals (Standard, low or very low leakage)
- Quality of damper installation
- Number of damper sections
- Approach air velocity
- Static pressure

The following procedures can be used to determine the damper torque, actuator size and quantity of actuators required to operate a damper.

Determing Damper Torque

1. From the damper manufacturer get the Damper Torque Rating (DTR) for the damper at the most severe operating conditions.
If the damper torque rating is not available,
Table 1 can be used for estimating purposes only on an interim basis. However, it is very important to get the damper torque rating from the manufacturer as soon as possible to assure accurate torque calculations.
2. Calculate the damper area (DA) in square feet from the damper dimensions.
3. Calculate the Total Damper Torque (TDT) in lb-in using the following formula:

TDT = DTR X DA

4. If the damper torque rating is not available, use a torque wrench on the damper shaft while air is moving through the duct to measure the TDT.

Actuator Size

1. From the actuator literature select the actuator type and size whose actuator torque rating (ATR) in lb-in is most appropriate for the application.
2. The ATR is normally based on 90° rotation of the damper. For torque ratings of other than $90^{\circ} \mathrm{f}$ rotation, use the following formula:

$$
\begin{gathered}
\text { ATR @ X́rotation }= \\
\text { ATR @ } 90^{\circ} \text { rotation x }\left(\frac{\text { Crank Radius @ } \mathrm{X}^{\circ}}{\text { Crank Radius @ } 90^{\circ}}\right)
\end{gathered}
$$

3. If the actuator is rated in pounds of thrust, it can be converted to torque using the following formula:

Torque $=\left({ }^{*}\right.$ Crank arm length $\left.\times 0.707\right) \times$ Thrust
*The crank arm length is for 90° shaft rotation at nominal actuator stroke.

Quantity of Actuators

1. Calculate the number of actuators required using the following formula:
Number of actuators $=\frac{\text { Total Damper Torque }}{\text { SF }}$
SF = Safety Factor: When calculating the number of actuators required, a safety factor should be included for unaccountable variables such as slight misalignments, aging of the damper, etc. A suggested factor is 0.8 or 80% of the rated torque.
2. If the number of actuators calculated is too large to be practical, select a more powerful actuator or consider using a positioning relay if it is a pneumatic actuator.

Table 1

Damper Type	Damper Leakage at 1" $\mathrm{H}_{2} \mathrm{O}$ Static Pressure Drop	Damper Torque for Approach Air Velocities of 1200 ft ./min. or less
Standard leakage	More than $10 \mathrm{CFM} / \mathrm{ft} .^{2}$	$2.5 \mathrm{lb} .-\mathrm{in} . / \mathrm{ft} .^{2}$
Low leakage	5 to $10 \mathrm{CFM} / \mathrm{ft} .^{2}$	$5.0 \mathrm{lb} .-\mathrm{in} . / \mathrm{ft} .^{2}$
Very low leakage	Less than $5 \mathrm{CFM} / \mathrm{ft} .^{2}$	$7.0 \mathrm{lb} .-\mathrm{in} . / \mathrm{ft} .^{2}$

Contact your local customer service representative for additional application assistance when specific damper factors are known.

Type	Intended Use and Description	Requirements or Qualification Tests, Paragraph or Section Numbers
1	Indoor use primarily to provide a degree of protection against limited amounts of falling dirt	Corrosion Protection-5.3 or Rust ResistanceSection 38
2	Indoor use primarily to provide a degree of protection against limited amounts of falling water and dirt.	Corrosion Protection-5.3 or Rust ResistanceSection 38, Drip-Section 31, Gaskets-Section 14 and Gasket Tests-Section 43
3	Outdoor use primarily to provide a degree of protection against rain, sleet, wind blown dust and damage from external ice formation. Sections 14, and Gasket Tests-Section 43	Rain-Section 30, Outdoor Dust or HoseSection 32 or 35, Icing-Section 34, Protective Coating-Section 15, Gaskets-
3R	Outdoor use primarily to provide a degree of protection against rain, sleet, and damage from external ice formation.	Rain-Section 30, Icing-Section 34, Protective Coating-Section 15, Gaskets-Section 14, and Gasket Tests-Section 43
3 S	Outdoor use primarily to provide a degree of protection against rain, sleet, windblown dust and to provide for operation of external mechanisms when ice laden.	Rain-Section 30, Outdoor Dust or HoseSection 32 or 35, Icing-Section 34, Protective Coating-Section 15, GasketsSections 14, and Gasket Tests-Section 43
4	Indoor or outdoor use primarily to provide a degree of protection against windblown dust and rain, splashing water, hose-directed water and damage from external ice formation.	Hosedown-Section 35, Protective CoatingSection 15, Icing-Section 34, GasketsSection 34, and Gasket Tests-Section 43
4X	Indoor or outdoor use primarily to provide a degree of protection against corrosion, windblown dust and rain, splashing water, hose-directed water, and damage from	Hosedown-Section 35, Protective CoatingSection 15, Corrosion Resistance-Section 39, Icing-Section 34, Gaskets-Sections 14, and Gasket Tests-Section 43
5	Indoor use primarily to provide a degree of protection against setting airborne dust, falling dirt, and dripping noncorrosive liquids.	Corrosion Protection-Section 5.3 or Rust Resistance-Section 38, Drip-Section 31, Indoor Setting Airborne Dust or Atomized Water Method B-Section 32 or 33, Gaskets-Sections 14, and Gasket Tests-Section 43
6	Indoor or outdoor use primarily to provide a degree of protection against hose-directed water, and the entry of water during occasional temporary submersion at a limited depth Tests-Section 43	Hosedown-Section 35, Icing-Section 34, Submersion-Section 36, Protective CoatingSection 15 Gaskets-Sections 14, and Gasket
6P	Indoor or outdoor use primarily to provide a degree of protection against hose-directed water, the entry of water during prolonged submersion at a limited depth and damage from external ice formation.	Hosedown-Section 35, Icing-Section 34, Protective Coating-Section 15, Air PressureSection 40, Gaskets-Sections 14, and Gasket Tests-Section 43
12, 12K	Indoor use primarily to provide a degree of protection against circulating dust, falling dirt, and dripping noncorrosive liquids. Section 15 Drip-Section 31, Indoor Setting	Corrosion Protection-Section 5.3 or Rust Resistance-Section 38,Protective Coating- Airborne Dust or Atomized Water Method BSection 32 or 33 , Gaskets-Sections 14, and Gasket Tests-Section 43
13	Indoor use primarily to provide a degree of protection against dust, spraying of water, oil, and noncorrosive coolant.	Corrosion Protection-Section 5.3 or Rust Resistance-Section 38, Oil-Section 37, GasketsSections 14, and Gasket Tests-Section 43

Table Notes

- Refer to specific sections in the UL Standard UL50 Enclosures for Electrical Equipment.
- NEMA Ratings can be applied by the manufacturer through a "self-certification" process or through an independent testing house, such as UL. The term, Type, indicates to an inspector that the certification was performed independently.

Multi-purpose, Balance-retard and Analog Relays

Relay Piping

Application Index
In the list below locate the application and type of required to locate the appropriate connections diagram.

Application	Type of Relay	Figure
Reverse Acting	Multi-purpose	1
Reverse Acting	Analog	2
Minimum Pressure	Multi-purpose	3
Minimum Pressure with Characterized Output	Multi-purpose	4
Minimum Pressure with Characterized Output	Analog	5
Characterized Minimum Pressure	Analog	6
Minimum Pressure with Hesitation	Balance-retard	7
Adjustable Minimum Pressure	Analog	8
Highest Pressure Signal Selector	Analog	8
Direct Acting	Multi-purpose	9
Direct Acting	Analog	10
Direct Acting with Positive Positioning Override	Analog	11
Signal Advancing	Multi-purpose	12
Adjustable Advancing	Analog	13
Summing	Analog	13
Signal Retard	Balance-retard	14
Signal Retard	Analog	15
Balancing	Balance-retard	16
Hesitation	Balance-retard	17
Averaging	Analog	18
Ratio 1 in = 2 out	Analog	19
Ratio 2 in = 1 out	Analog	20
Signal Inverting	Multi-purpose	21
Signal Inverting	Analog	22
Lowest Pressure Signal Selector	Multi-purpose	23
Lowest Pressure Signal Selector	Analog	24
Differential Pressure	Analog	25
Limit Control Direct Acting	Multi-purpose	26
Pressure Limiting in Dual Pressure Systems	Balance-retard	27
Limit Control Reverse Acting	Multi-purpose	28

Figure 1.

Figure 3.

Figure 2.

Figure 4.

Key			
R	Output signal port	S	Air supply port
TD	Direct acting input signal port	SP	Setting of the adjustable screw
TR	Reverse acting input port	T	Direct acting input port

(Continued—Refer to chart on I-23)

Figure 14.

Figure 15.

Figure 16.
(Continued—Refer to chart on I-23)

Figure 21.

Figure 22.

Figure 23.

Figure 25.

Figure 27.

Figure 28.

SIEMENS

Siemens	Honeywell	Johnson	Robertshaw	Barber-Colman	$\begin{aligned} & \text { Discontinued } \\ & \text { Siemens } \\ & \text { (Powers) } \end{aligned}$
$\begin{aligned} & 243-0009 \\ & 243-0046 \end{aligned}$ Reverse Acting	RP 972 A Reverse Acting	$C-208$ Reverse Acting	R 516 Reverse Acting	AK 50613 Reverse Acting	TYPE 783 Reverse Acting
$\begin{gathered} 243-0009 \\ 243-0046 \\ \text { Direct Acting } \end{gathered}$	RP 970 A Direct Acting	C 5230 Direct Acting	R 532-L Direct Acting	AK-50603 Direct Acting	 Type 782 Direct Acting
$\begin{aligned} & 243-0009 \\ & 243-0046 \end{aligned}$ Minimum Pressure	SP 970 A Minimum Pressure	C 5230 Minimum Pressure	S511-5 Minimum Pressure	AK-50605 Minimum Pressure	Type 782 Minimum Pressure
$\begin{gathered} 243-0010 \\ 243-0047 \\ \text { Balancing Relay } \end{gathered}$	NONE	C 130-1 Balancing Relay	NONE	NONE	
	RP 971 A 1007 Sequencing Relay (Setpoint + 3 psig)	$\begin{gathered} \text { C 202-1 } \\ 1 \text { In }=2 \text { Out } \end{gathered}$	R 539 $1 \text { in }=2 \text { Out }$	$\begin{aligned} & A K-50703 \\ & 1 \mathrm{In}=2 O \mathrm{O} \end{aligned}$	Type 782-0070 1 in = 2 Out

To Convert From	Into	Multiply By
atmospheres	feet of water (at $4^{\circ} \mathrm{C}$)	33.90
atmospheres	inch of mercury (at $0^{\circ} \mathrm{C}$)	29.92
atmospheres	pounds/square inch	14.70
Btu	foot-pounds	778.3
Btu	horsepower-hours	3.931×10^{-4}
Btu	kilowatt-hours	2.928×10^{-4}
Btu/hour	foot-pounds/second	0.2162
Btu/hour	horsepower-hours	3.929×10^{-4}
Btu/hour	watts	0.2929
Btu/minute	foot-pounds/second	12.96
Btu/minute	horsepower	0.02356
Btu/minute	kilowatts	0.01757
Btu/minute	watts	17.57
Btu/minute	tons of refrigeration	1/200
Btu/hour	tons of refrigeration	1/12,000
Btu/ft. ${ }^{2}$ /minute	Watts/square inch	0.1221
Btu/pound air	Kilojoules/kilogram	2.33
Candle/in. ${ }^{2}$	Laberts	0.4870
Candle/ft. ${ }^{2}$	Candle meters	0.0929
cubic feet	cubic inches	1,728.0
cubic feet	cubic yards	0.03704
cubic feet	gallons (U.S. liquid)	7.48052
cubic feet	pints (U.S. liquid)	59.84
cubic feet	quarts (U.S. liquid)	29.92
cubic feet/min.	gallons/second	0.1247
cubic feet/min.	pounds of water/minute	62.43
cubic feet/min.	liters per second	0.4719
cubic feet/sec.	millions gallons/day	0.646317
cubic feet/sec.	gallons/minute	448.831
cubic inches	cubic feet	5.787×10^{-4}
cubic inches	cubic yards	2.143×10^{-5}
cubic inches	gallons	4.329×10^{-3}
cubic yards	cubic feet	27.0
cubic yards	cubic inches	46,656.0
cubic yards	gallons (U.S. liquid)	202.0
cubic yards	pints (U.S. liquid)	1,615.9
cubic yards	quarts (U.S. liquid)	807.9
cubic yards/min.	cubic feet/second	0.45
cubic yards/min.	gallons/second	3.367
degrees (angle)	seconds	3,600.0
degrees/second	revolutions/minute	0.1667

To Convert From	Into	Multiply By
feet of water	atmospheres	0.02950
feet of water	inch of mercury	0.8826
feet of water	pounds/square foot	62.43
feet of water	pounds/square inch	0.4335
feet/min.	feet/second	0.01667
feet/min.	miles/hour	0.01136
feet/sec.	miles/hour	0.6818
feet/sec.	miles/min.	0.01136
Foot-candle	Lumen/square meter	10.764
foot-pounds	Btu	1.286×10^{-3}
foot-pounds	horsepower-hour	5.050×10^{-7}
foot-pounds	kilowatt-hour	3.766×10^{-7}
foot-pounds/min.	Btu/min.	1.286×10^{-3}
foot-pounds/min.	foot-pounds/second	0.01667
foot-pounds/min.	horsepower	3.030×10^{-5}
foot-pounds/min.	kilowatts	2.260×10^{-5}
foot-pounds/sec.	Btu/hour	4.6263
foot-pounds/sec.	Btu/min.	0.07717
foot-pounds/sec.	horsepower	1.818×10^{-3}
foot-pounds/sec.	kilowatts	1.356×10^{-3}
gallons	cubic feet	0.1337
gallons	cubic inches	231.0
gallons	cubic yards	4.951×10
gallons	liters	3.785
gallons (liq. Br. Imp.)	gallons (U.S. liquid)	1.20095
gallons (U.S.)	gallons	0.83267
gallons of water	pounds of water	8.3453
gallons/min.	cubic feet/sec.	2.228×10^{-3}
gallons/min.	cubic feet/hour	8.0208
US gallons/min.	liters per second	0.06309
US gallons/min.	liters per second	3.7854
gallons/hour	cubic meters/hour	1.434×10^{-3}
horsepower	Btu/minute	42.44
horsepower	foot-pounds/min.	33,000.0
horsepower	foot-pounds/sec.	550.0
horsepower	kilowatts	0.7457
horsepower	Watts	745.7
horsepower (boiler)	Btu/hour	33.479
horsepower (boiler)	kilowatts	9.803
horsepower-hours	Btu	2,547.0
horsepower-hours	foot-pounds	1.98×10^{6}
horsepower-hours	kilowatt-hours	0.7457

To Convert	Into	Multiply By
inch	Pa	248.84
inches	yards	2.778×10^{-2}
inches of mercury	atmospheres	0.03342
inches of mercury	feet of water	1.133
inches of mercury	pounds/square feet	70.73
inches of mercury	pounds/square feet	0.4912
inches of water	atmospheres	2.458×10^{-3}
inches of water	inches of mercury	0.07355
in. of water (at $4^{\circ} \mathrm{C}$)	ounces/square inches	0.5781
inches of water	pounds/square feet	5.204
inches of water	pounds/square inches	0.03613
kilometers	miles	0.6214
kilometers	yards	1,094.0
kilowatts	Btu/minutes	56.92
kilowatts	foot-pounds/minutes	4.426×10^{4}
kilowatts	foot-pounds/second	737.6
kilowatts	horsepower	1.341
kilowatts	Watt	1,000.0
kilowatts	Btu	3,413.0
kilowatts-hour	foot-pounds	2.655×10^{6}
kilowatts-hour	horsepower-hour	1.341
kilowatts-hour	pounds of water evaporated from and at $212^{\circ} \mathrm{F}$	3.53
liters per sec.	US gal/min.	15.85
lumens/square feet	foot-candles	1.0
Lumen	Spherical candle power	0.07958
Lumen	Watt	0.001496
Lumen/square feet	Lumen/square meters	10.76
lux	foot-candles	0.0929
lux	btu/hr.	1000
meter	inches	39.372
meters	feet	3.281
meters	yards	1.094
miles/hour	feet/minute	88.0
miles/hour	feet/second	1.467
miles/hour	miles/minute	0.1667
miles/minute	feet/second	88.0
miles/minute	miles/hour	60.0

To Convert	Into	Multiply By
OHM (international)	OHM (absolute)	1.0005
ounces	pounds	0.0625
pounds	ounces	16.0
pounds of water	cubic feet/second	0.01602
pounds of water	cubic inches	27.68
pounds of water	gallons	0.1198
pounds of water/min.	cubic feet/second	2.670×10^{-4}
pounds/cubic feet	pounds/cubic inches	5.787×10^{-4}
pounds/cubic inches	pounds/cubic feet	1,728.0
pounds/square feet	atmospheres	4.725×10^{-4}
pounds/square feet	feet of water	0.01602
pounds/square feet	inches of mercury	0.01414
pounds/square feet	pounds/square inches	6.944×10^{-3}
pounds/square inch	atmospheres	0.06804
pounds/square inch	feet of water	2.307
pounds/square inch	inches of mercury	2.036
pounds/square inch	pounds/square feet	144.0
revolutions	degrees	360.0
square feet	square inches	144.0
Watts	Btu/hour	3.4129
Watts	Btu/minute	0.05688
Watts	foot-pounds/minute	44.27
Watts	foot-pounds/second	0.7378
Watts	horsepower	1.341×10^{-3}
Watts	kilowatts	0.001
Watt-hours	Btu	3,413.0
Watt-hours	foot-pounds	2,656.0
Watt-hours	horsepower-hour	1.341×10^{-3}
Watt-hours	kilowatt-hour	0.001

Quantity	To Convert From	Into	Multiply By
Area	Square Inches (in. ${ }^{2}$)	Square Centimeters (cm^{2})	6.4516
	Square Feet ($\mathrm{ft} .^{2}$)	Square Meters (m^{2})	9.2903×10^{-2}
Enthalpy/Heat	BTU Per Pound-Mass- ${ }^{\circ} \mathrm{F}$ (BTU/lb. $\mathrm{x}^{\circ} \mathrm{F}$)	Kilojoule Per Kilogram—Kelvin (kJ/kg.K)	4.1840
Flow ${ }^{1}$	Cubic Inches Per Minute (in. ${ }^{3} / \mathrm{min}$.)	Cubic Centimeters Per Second ($\mathrm{cm}^{3} / \mathrm{s}$)	0.2731
	Cubic Feet Per Minute (ft. ${ }^{3} / \mathrm{min}$.)	Cubic Centimeters Per Second ($\mathrm{cm}^{3} / \mathrm{s}$)	471.9474
	Cubic Feet Per Minute ($\mathrm{ft} .^{3} / \mathrm{min}$.)	Cubic Decimeters Per Second ($\mathrm{dm}^{3} / \mathrm{s}$) $\left.=1 \mathrm{~s}\right)^{3}$	0.4719
	Cubic Feet Per Minute ($\mathrm{ft} .^{3} / \mathrm{min}$.)	Cubic Meters Per Second ($\mathrm{m}^{3} / \mathrm{s}$)	0.4719×10^{-3}
	Cubic Feet Per Minute (ft. ${ }^{3} / \mathrm{min}$.)	Cubic Meters Per Hour ($\mathrm{m}^{3} / \mathrm{h}$)	1.6990
	Standard Cubic Feet Per Minute SCFM 60º, 14.7 psia	Cubic Meters Per Hour ($\mathrm{m}^{3} / \mathrm{h} 0^{\circ} \mathrm{C}, 1.01325 \mathrm{bar}$)	$\begin{aligned} & 1.695 \\ & 1.607 \end{aligned}$
	Standard Cubic Feet Per Minute SCFM 60F, 14.7 psia	Cubic Meters Per Hour ($\mathrm{m}^{3} / \mathrm{h} 15^{\circ} \mathrm{C}, 1.01325 \mathrm{bar}$)	1.695
	Gallons Per Minute (U.S. liquid) (GPM)	Cubic Decimeters Per Seconds ($\mathrm{dm}^{3} / \mathrm{s}$) $=1 / \mathrm{s}$)	0.0631
Force	Pound (Force) (lb.)	Newtons (N)	4.4482
Length	Inches (in.)	Millimeters (mm)	25.4000
	Inches (in.)	Centimeters (cm)	2.5400
	Feet (ft.)	Centimeters (cm)	30.4800
	Feet (ft.)	Meters (m)	0.3048
Mass (Weight) ${ }^{2}$	Pound (lb.)	Kilogram (kg)	0.4536
Power	BTU Per Hour (BTU/hr.)	Watts (W)	0.2929
	Horsepower (hp)	Watts (W)	746.0000
Pressure (Stress)	Pounds Per Square Inch (psi)	Kilopascals (kPa)	6.8947
	Kilograms Per Square Centimeters ($\mathrm{Kg} / \mathrm{cm}^{2}$)	Kilopascals (kPa)	98.0665
	Inches of Water (" W.G.) @ 60%	Pascals (Pa)	248.84
	Inches of Mercury (" H.G.) @ 60F	Pascals (Pa)	3376.85
Toruqe (Bending)	Degrees Fahrenheit (${ }^{\circ} \mathrm{F}$)	Degrees Celcius ($\mathrm{t}^{\circ} \mathrm{C}$)	$\mathrm{t}^{\circ} \mathrm{C}=\frac{\left(\mathrm{t}^{\circ} \mathrm{F}-32\right)}{1.8}$
	Degrees Fahrenheit (${ }^{\circ} \mathrm{F}$)	Kelvin (tK)	$\mathrm{tK}=\frac{\left(\mathrm{t}^{\circ} \mathrm{F}+459.67\right)}{1.8}$
Torque	Pound Force-Inch (lb.-in.)	Newton-Meter (Nm)	0.1129
	Pound Force-Foot (lb.-ft.)	Newton-Meter (Nm)	1.3558
Velocity	Feet Per Second (ft./sec.)	Meters Per Second (m/s)	0.3048
	Feet Per Minute (ft./min.)	Meters Per Second (m / s)	5.0800×10^{-3}
	Miles Per Hour (MPH)	Meters Per Seond (m/s)	0.4470
Volume	Cubic Inches (in. ${ }^{3}$)	Cubic Centimeters (cm^{3})	16.3871
	Cubic Feet ($\mathrm{ft} .^{3}$)	Cubic Meters $\left(\mathrm{m}^{3}\right)=$ Stere	2,8317 $\times 10^{-2}$
	Gallons U.S. (gal.)	Cubic Meters $\left(\mathrm{m}^{3}\right)=$ Stere	3.7854×10^{-3}
	Ounce (oz.)	Cubic Meters $\left(\mathrm{m}^{3}\right)=$ Stere	2.9573×10^{-5}
Work (Energy)	BTU (BTU)	Kilojoule (kJ)	1.0551
	Foot Pound (ft.-lb.)	Joule (J)	1.3558
	Watthour (W-hr.)	Kilojoule (kJ)	3.6000

Chart Notes

1. Since standard and normal cubic meters (STD m^{3} and Nm^{3}) do not have a universally accepted definition, their reference pressure and temperature should always be spelled out.
2. In commercial and everyday use, the term weight almost always means mass.
3. Air consumption for pneumatic control devices should be expressed in milliliters per second (ml / s).

Allowable leakage rates for pneumatic control devices should be expressed in milliliter per second (ml / s) or microliters per second (ul/s).

SIEMENS

Instructions

The index numbers in bold face refer to the pressure either in psi or kilopascals (kPa) which it is desired to convert into the other scale. If converting from psi to kPa the equivalent pressure will be found in the left column, while if converting from kPa to psi , the equivalent pressure will be found in the column on the right.
Example: Index $1515 \mathrm{psi}=103.421 \mathrm{kPa} .15 \mathrm{kPa}=2.176 \mathrm{psi}$
By manipulation of the decimal point, this table may be extended to values below or above 100 .

kPa	Index	
0.000	0	0.000
6.895	1	0.145
16.789	2	0.290
20.684	3	0.435
27.579	4	0.580
34.474	5	0.725
41.368	6	0.870
48.263	7	1.015
55.158	8	1.160
62.053	9	1.305
68.948	10	1.450
75.842	11	1.595
82.737	12	1.740
89.632	13	1.885
96.527	14	2.030
103.421	15	2.176
110.316	16	2.321
177.211	17	2.466
124.106	18	2.611
131.000	19	2.756
137.895	20	2.901
144.790	21	3.046
151.685	22	3.191
158.579	23	3.336
165.474	24	3.481
172.369	25	3.626

$\mathrm{psi}^{\mathrm{kPa}}$	Index	
179.264	26	3.771
186.058	27	3.916
193.053	28	4.061
199.948	29	4.206
206.843	30	4.351
213.737	31	4.496
220.632	32	4.641
227.527	33	4.786
234.422	34	4.931
241.316	35	5.076
248.211	36	5.221
255.106	37	5.366
262.001	38	5.511
268.895	39	5.656
275.790	40	5.801
282.685	41	5.946
289.580	42	6.092
296.475	43	6.237
303.369	44	6.382
310.264	45	6.527
317.459	46	6.672
324.054	47	5.617
330.948	48	6.962
337.843	49	7.107
344.729	50	7.252

kPa	Index	psi
531.633	51	7.397
358.527	52	7.542
365.422	53	7.687
372.317	54	7.832
379.212	55	7.977
386.106	56	8.122
393.001	57	8.267
399.896	58	8.412
406.791	59	8.557
413.685	60	8.702
420.580	61	8.847
427.475	62	8.992
434.370	63	9.137
441.264	64	9.282
448.159	65	9.427
455.054	66	9.572
431.949	67	9.717
468.843	68	9.862
475.738	69	10.008
482.633	70	10.153
489.528	71	10.298
496.422	42	10.443
503.317	73	10.588
510.212	74	10.733
517.107	75	10.878

kPa	Index	psi
524.001	76	11.023
530.896	77	11.168
537.791	78	11.313
544.686	79	11.458
551.581	80	11.603
558.475	81	11.748
565.370	82	11.893
572.265	83	12.038
579.160	84	12.183
586.054	85	12.328
592.949	86	12.473
599.844	87	12.618
606.739	88	12.763
613.633	89	12.908
621.528	90	13.053
627.423	91	13.198
634.318	92	13.343
641.212	93	13.488
648.107	94	13.633
655.002	95	13.778
661.897	96	13.924
668.791	97	14.069
675.686	98	14.214
682.581	99	14.359
689.476	100	14.504

All values rounded to 0.001 .

Instructions

The numbers in bold face refer to the temperature either in degrees Celsius (${ }^{\circ} \mathrm{C}$) or Fahrenheit (${ }^{\circ} \mathrm{F}$) to convert into the other scale. If converting from ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$, the equivalent temperature will be found in the left column. If converting from degrees ${ }^{\circ} \mathrm{C}$ to degrees ${ }^{\circ} \mathrm{F}$, the answer will be found in the column to the right.

${ }^{\circ} \mathrm{C}$	-50 to 45	${ }^{\circ} \mathrm{F}$
-45.6	-50	-58
-40.0	-40	-40
-34.4	-30	-22
-28.9	-20	-4
-23.3	-10	14
-17.8	0	32
-17.2	1	33.8
-16.7	2	35.6
-16.1	3	37.4
-15.6	4	39.2
-15.0	5	41.0
-14.4	6	42.8
-13.9	7	44.6
-13.3	8	46.4
-12.8	9	48.2
-12.2	10	50.0
-11.7	11	51.8
-11.1	12	53.6
-10.6	13	55.4
-10.0	14	57.2
-9.44	15	59.0
-8.89	16	60.8
-8.33	17	62.6
-7.78	18	64.4
-7.22	19	66.2
-6.67	20	68.0
-6.11	21	69.8
-5.56	22	71.6
-5.00	23	73.4
-4.44	24	75.2
-3.89	25	77.0
-3.33	26	78.8
-2.78	27	80.6
-1.67	28	82.4
-1.67	29	84.2
-1.11	30	86.0
-0.56	31	87.8
0	32	89.6
0.56	33	91.4
1.11	34	93.2
1.67	35	95.0
2.22	36	96.8
2.78	37	98.6
3.33	38	100.4
3.89	39	102.2
4.44	40	104.0
5.00	41	105.8
5.56	42	107.6
6.11	43	109.4
6.67	44	111.2
7.22	45	113.0

${ }^{\circ} \mathrm{C}$	46 to 96	${ }^{\circ} \mathrm{F}$
7.78	46	114.8
8.33	47	116.6
8.89	48	118.4
9.44	49	120.2
10.0	50	122.0
10.6	51	123.8
11.1	52	125.6
11.7	53	127.4
12.2	54	129.2
12.8	55	131.0
13.3	56	132.8
13.9	57	134.6
14.4	58	136.4
15.0	59	138.2
15.6	60	140.0
16.1	61	141.8
16.7	62	143.6
17.2	63	145.4
17.8	64	147.2
18.3	65	149.0
18.9	66	150.8
19.4	67	152.6
20.0	68	154.4
20.6	69	156.2
21.1	70	158.0
21.7	71	159.8
22.2	72	161.6
23.8	73	163.4
23.3	74	165.2
23.9	75	167.0
21.1	76	168.8
25.0	77	170.6
25.6	78	172.4
26.1	79	174.2
26.7	80	176.0
27.2	81	177.8
27.8	82	179.6
28.3	83	181.4
28.9	84	183.2
29.4	85	185.0
30.0	86	186.8
30.6	87	188.6
31.1	88	190.4
31.7	89	192.2
32.2	90	194.0
32.8	91	195.8
33.3	92	197.6
33.9	93	199.4
34.4	94	201.2
35.0	95	203.0
35.6	96	204.8

${ }^{\circ} \mathrm{C}$	97 to 1000	${ }^{\circ} \mathrm{F}$
36.1	97	206.6
36.7	98	208.4
37.2	99	210.2
37.8	100	212.0
43	110	230
49	120	248
54	130	266
60	140	284
66	150	302
71	160	320
77	170	338
82	180	356
88	190	374
93	200	392
99	210	410
100	212	413
104	220	426
110	230	443
116	240	464
121	250	482
127	260	500
132	270	518
138	280	536
143	290	554
149	300	572
154	310	590
160	320	608
166	330	626
171	340	644
177	350	662
182	360	680
188	370	698
193	380	716
199	390	734
204	400	752
210	410	770
216	420	788
221	430	806
227	440	824
232	450	842
238	460	860
243	470	878
249	480	896
254	490	914
260	500	932
316	600	1112
371	700	1292
427	800	1472
482	900	1652
538	1000	1832

[^0]: * This equates to a pump head pressure of approximately 230 ft . Not very common HVAC applications.
 ** Valve can be line sized to minimize pressure losses; butterfly valves are also used for these applications.

